The Paradox of Cancer’s Warburg Effect

Cancer and Glucose Metabolism

Dr. Jason Fung

--

The Warburg Effect refers to the fact that cancer cells, somewhat counter intuitively, prefers fermentation as a source of energy rather than the more efficient mitochondrial pathway of oxidative phosphorylation (OxPhos). We discussed this in our previous post.

In normal tissues, cell may either use OxPhos which generates 36 ATP or anaerobic glycolysis which gives you 2 ATP. Anaerobic means ‘without oxygen’ and glycolysis means ‘burning of glucose’. For the same 1 glucose molecule, you can get 18 times more energy using oxygen in the mitochondrion compared to anaerobic glycolysis. Normal tissues only use this less efficient pathway in the absence of oxygen — eg. muscles during sprinting. This creates lactic acid which causes the ‘muscle burn’.

However, cancer is different. Even in the presence of oxygen (hence aerobic as opposed to anaerobic), it uses a less efficient method of energy generation (glycolysis, not phosphorylation). This is found in virtually all tumors, but why? Since oxygen is plentiful, it seems…

--

--

Dr. Jason Fung

Nephrologist. New York Times best selling author. Interest in type 2 diabetes reversal and intermittent fasting. Founder www.TheFastingMethod.com.